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Part A
Manned-Unmanned Separation




Problem Definition
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Proposed Solution Part A
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Traffic Modelling Part A
Manned Traffic Flow
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Traffic Modelling . Part A
Manned Traffic Flow
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Traffic Modelling
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Separation Analysis - Method

Method/Model

Given a UAS altitude and nav. performance, what is the likelihood the vertical displacement between manned

and unmanned is less than a specified separation buffer?
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McFadyen. A and Martin. T. “Understanding Vertical Collision Risk and Navigation Performance for Unmanned Aircraft, ”IEEE/AIAA Digital Avionics Systems Conf. (DASC), London, 2018



Separation Analysis — Example A (Aerodrome Cells)
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Separation Analysis — Example B (Runways) Part A
va ) and Separation
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Separation Analysis — Example C (Aerodrome Points)
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Airspace Structure - Method

Method/Model

Given a separation buffer (s,) and UAS nav. perf., what is the max. UAS altitude such that the likelihood
that the vertical displacement between manned and unmanned being less than (s,) is equal to a specified

TLS?
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McFadyen. A. “Max Altitude Determination for Unmanned Aircraft Integration and Management, ”IEEE/AIAA Digital Avionics Systems Conf. (DASC), San Diego, 2019 (Best UTM Paper




Airspace Structure - Example A (Aerodrome Segments)
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Airspace Structure - Example A (Aerodrome Segments) Part A
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Alrspace Structure - Example B (Aerodrome CeIIs)
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Airspace Structure - Example B (Aerodrome Cells - Comparison)
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Part B
Unmanned-Unmanned Separation




What separation/buffer results
in how much collision risk and
therefore, what is required nav.
performance?
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Proposed Solution
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ICAO Doc 9689. “Manual on airspace planning methodology for the determination of separation minima,” Washington D.C, 2016



Separation Analysis - Method
Method/Model

Given a UAS nav. performance, scaled velocity/params and a TLS, what is the required lateral displacement
(separation) between unmanned aircraft on parallel tracks?

NB: Only Lateral Calculated
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Separation Analysis - Example A (Two Parallel Tracks)
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Strategic Separation
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Manned-Unmanned Separation Development

U Method to quantify vertical collision risk (terminal areas) aligned to manned aviation practise that can
be used for multiple analysis types (separation/segregation standard/buffer, navigation perf. etc.)

U Method to derive max safe altitudes (terminal areas) that explicitly considers navigation perf.,
separation/segregation standard/buffer, data error via collision risk modelling.

Unmanned-Unmanned Separation Development

U Method based on manned approaches to investigate navigation perf. requirements and associated
separation standards/buffers.

General

U Useful for ANSP’s, regulators and operators alike - with applications in airspace design (low-level/lUTM/U-
Space) and development of navigation perf. requirements/definitions/standards.

U Software (semi-automated) created and being further extended, tested and validated
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